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Abstract -Svmmetrv of Iin~ar m~ehanical syst~ms permits one to substantially reduce th~ effort in
their 'lnal\si~. Classitk'ltion and structural anal\sis of the linih: Iint:ar symmetric systems Imodds)
are studi~d in this paper. There are two \ari:lnts of th~ symm~try approach: mechanical and
all!ehraic. In accordance with the former. a symmetric system is replaced hy one or several sm.t11
m~nsvmmetric suhsvstems which are subjected tll special loads obtained fwm the initial set. The
total'response of th~ original symmetric system is found by special superposition of partial respon~s
of these subsystems. Th~ algebraic approach is based on the e)(plicit block diagonal decompllsition
of the matrill equation corresponding to a symmetric system. While both approaches have the same
cllicieney the latt,'r is e'lsier to implement and describe. It is presented here. The condtions under
which the symmetry technique may he utilized do not include symmetry of the applied loads
(specifically. symmetry of th"se loads which foml the right side of the ass"ciated equations).
Nevertheless. if the loads are symmetric. the efficiency of the symmetry approach substantially
increases. Group theory. which is widdy used in this paper. is the mathematical tllol for Ihe study
"f synlllletry. and all necessary T1(,til'ns arc Illtn,duced.

I INTRODUCTION

1.1. The most time-consuming part of the analysis of large linear mel:hanical systems
is assol:iated with the construction and the solution of systems of linear equations. Even
with the assistam;e of modern l:omputers this problem is still of a great value. Fortunately,
for m,lOy technological requirements large mechanical systems arc orten composed of a
huge number of identical elements or suhsystems. Many types of these "ordering" systems
permit special, very c1licient, methods of analysis. Symmetric systems form an important
class of "ordering" systems.

Symmetry of the mechanil:al system is usually associated with its geometry. System S
will be called symmetric (more precisely geometrically symmetric) if there exist rigid body
motions known as symmetry transformations (or operations) which bring S into coincidence
with itself with no breaks and/or intersections. There are three basic symmetry operations:
rotations about axes, reflections in planes and translations. Two hundred and thirty different
types of symmetric systems (SS) arc left unaltered under these symmetry transformations.
Every such system is infinitely large in the directions which possess the property of trans­
lational symmdry.

(n this paper. the study of the SS is limited to a set of the flllite symmetric systems
which ineludes 14 different types. For sUl:h a purpose one has to eliminate translations from
the sd of symmetry operations under consideration.

1.2. The symmetry tCl:hni4ue in the analysis of mechanical systems is utilized in two
ways, which can be called the mechanical and the algebraic approaches. According to the
former, the original symmetric system is replaced by one or several small, nonsymmetric
subsystems. One has to build the special loads which these subsystems are subjected to and
calculate the partial responses using the standard technique. The total response of the
original system is then determined by a special superposition of the partial responses.

The algebraic approach, presented in this paper, is based on the explicit block diagonal
decomposition of the matrix equation corresponding to the original symmetric system.
While both approaches have the same efficiency, it seems that the lalter is easier to describe
and implement.

1.3. Group theory is the mathematical tool for the study of symmetry. (t is widely used
in quantum mechanics and crystallography; see Rosen (1983). Wigner (1959), Hamermesh
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(1962). Falicov (1966). and Landau and Lifshitz (1977). Its first application to structural
mechanics was made by Wigner in 1930. The next 50 years brought many publications in
this field: Singh and Mishra (19721. Kardestuncer and Berg (1974), Miller (1981), Zhong
and Qiu (1983), Burishkin and Gordeev (1984), Dinkevich (1984), and others. Note that
in the case of simple finite symmetric systems the symmetry technique may be utilized with
no involvement of group theory; see MacNeal ef at. (1973) and Dinkevich (1977). It was
even concluded that the finite element analysis of symmetric systems does not require the
use of group theory (Everstine, 1987), which is certainly incorrect if we want to exploit
symmetry systematically and completely. Group theory and especially group representation
theory will be widely used in this paper. Although it is assumed that the readers are familiar
with this subject, all necessary notions are introduced throughout the paper.

2. FI;";ITE SYMMETRIC SYSTEMS

2.1. Finite symmetric systems (FSS) are those which are left unaltered under such
symmetry operations as rotations about axes and reflections in planes. Symmetry operations
will be denoted by q I' qe' etc., and 91 will always present the identity transformation which
leaves system 5 unmoved: .ql == e. A successive application of two symmetry operations 9,

and 9/ is also a symmetry operation. denoted by the product 9i9/ if 9i precedes 9i or bY.llt.qi

if9j follows 9i' In general 9,.llt ~ 9i9" otherwise operations 9, and 9i are called commutative.
Suppose that under rotation 9/ = c~. j = I, ... ,,, through the angle Y.J = (j - 1) . 2rr./" about
an axis c, system 5 is left unaltered. Then, this axis is called the n-fold rotational axis and
is denoted by c" (11 is its order). The product of two rotations, not necessarily about the
same axis. is a new rotation : c~c:" = c~. The product of two reflections (y == (1) in the same
plane returns S to the initial state and is treated as the identity transformation:
(1' (1 == (12 ::: e. Rotations through angles IX I = 0 and ct" f 1 ::: 2rr. also return system 5 to its
initial state, hence 1'~ = 1'7, f I = c. The product of rotation 1'~ about an axis Cn and reflection
(1 in the perpendicular plane, that is (1C~, is also a symmetry transformation, known as a
rotation reflection (or improper rotation) about a rotation retlection axis s~". Subscript 2n
emphasizes the fact that such an axis is always of an even ordcr. Rotation reflections arc
denoted by s~". Operations c~ and (1 commute, hence s~" = (1C~ = C~(1.

Axes C" and S2" and planes (J arc called the symmetry clements of systems 5. Let A I be
a certain point of S which docs not belong to any symmetry clcmcnt; then under h symmetry
operations this point will be located at II different places A/ = ,l/,A I, j = I, ... , II. It is evident
that under II symmetry transformations subsystem SI containing a neighbourhood of this
point will occupy II different parts of S. Thus. if under h symmetry operations system 5
coincides with itself. it must be composed of h identical subsystems 51' j = I, ... , h. We call
them the primitives, since they possess no symmetry clements. The 51' chosen arbitrarily,
is called the fundamental primitive. Thus

II

s= US/.
J-I

( I )

2.2. It is convenient to classify finite symmetric systems into three symmetry classes
with respect to the order of their axes. The first (or lowest) class includes the FSS which
have 2-fold axes and, possibly, some planes of reflection. The second (or middle) class is
composed of systems which possess one" (;;:d)-fold axis, a principal axis, and possibly,
some second-order axes as well as symmetry planes. We call them the cyclically symmetric
systems, the CSS. The third (or highest) class comprises systems which have several axes
of order n ~ 3. We associate them with five Platonic solids, or regular polyhedra, namely,
tetrahedrons (containing four regular triangular faces), hexahedrons or cubes (six square
faces), octahedrons (eight regular triangular faces), dodecahedrons (12 regular pentagonal
faces), and icosahedrons (20 regular triangular faces). In this paper we are interested in the
second class of symmetric systems since it is mostly used in practice.

There are seven types of the CSS which we will denote as C, 52"' Cnh , e"" Dn, D"h
and D"d' They are distinguished in types and numbers of symmetry elements and are shown
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in Table I (column 4). The types and numbers of symmetry elements are given in column
3, where CII and $211 are the symmetry axes, and CTh' CTv and CTd are the symmetry planes. CTb

represents a horizontal plane (in general. the plane which is perpendicular to the principal
axis). CTv indicates vertical planes (i.e. planes passing through the principal axis), and CTd

denotes the diagonal planes. that is. the vertical planes which do not pass through the
horizontal axes C~ but pass midway between each pair of them.

Having a principal axis (cII or S1ll). every CSS is composed of n or 2n identical faces.
Each face mayor may not be symmetric; their symmetry is marked by small circles ("holes")
in column 4. Possessing no symmetry elements. nonsymmetric faces will be called the
primitives. Symmetric faces are divided into p primitives. whose total number is

II = pn. p = I. 2 or 4.

Table I. Cyclically symm.:tric systems lCSS)

(2)

SYMMETRY OPERATIONS
TYPE

SYMMETRY ORDER
" Of CONfiGURATlON gl' gl'+n gl'+2n gl"3n

CSS
ELEMENTS h

1'=1 •....n 1'=1.....n 1'~1 •...•n 1'=1 •...•n

I 2 3 4 5 6 7 8 9

~I Cn l'cn n 1'-1
.. II

cn.. ,,

~
- - 1'-1 1'-12 S2n "'2n 2n.... . ... /

cn 'n
.~.. t ~., J.

~
• .#'''' ,

1'-1 c~-luh3 Cllh l'c"tl'''h _I" / 2n" ' " ' .. ~ cn... , ....'f" _____........ ,1

.,,1

~r 'db. . ,, .
1'-1 1'·14 Cnv l'en "n"l v

... . ,.
2n

'''''''1'' :_/
cn en U v". . ."..... I : ... , I I.

~r
" \" \" .

5 On l'cn+n'c2
.. ........... ... /'

2n 1'-1 c~-IU2

:;~. \/'1 'l,.
Cn

flo ,#,'" ".1,,"

tif ..l-cn+n'c2 : ., ......... t..·- .
6 Dnh

.... • g

4n 1'-1 c~'lah 1'·1 C~-l<ly.. ",., cn c n u2
..'",,0 I .. ",',

+ 1'''h+n'''y 'f, •• "l'~;'"
It. :~-:"l:': ... ,'.. .."

\
,

"I. !]1D. .
l'cn+n- C2 ·. , ,. ,, . .. ..' J7 Dnd

, ., 4n 1'-' 1'.1 c~"ad 1'-1, ...
I ) : ,:

cn 'n c n u2
+ I'''h +n-"d • -:,. :J· :,.~I 1o':I"j) I

I Q I~ /
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As shown in Tabl~ I (l:Olumn 5). r = 1corre'ponds to system C. the simplest CSS. It has
no other symmetry elements but the principal axis c... System S;" also has nonsymmetric
faces. which are arranged ditfcrently from those in C (as illustrated by hoksl. Their number
is ;'11. hence I' = ;.. Each of n faces \.)1' the next three systems. Ch' C, and D". possesses one
additional symmetry dement: a h\.)rizontal plane "h or a vertical plane (Y •.• or a horizontal
a\is c:- Therefore every face of the,e systems j, divided into r :2 primitives depicted in
Table I by dotted lines. Faces of D." contain three symmetry elements each. namely. 0"". 0",

and c> hence they are divided intI' l' = "l primitives, Finally. the last system D"J can be
derived from D., by adjoining to it II n:rtical planes IT,';", ...• a:t. which do not pass through
horizontal axes C';I'. ' . , • Cl~" but midway betwcen each two. In this case the principal a\is
c" becomes a r\.)(at i\.llla I reflection axi, s>: therefore. it I, easier to deduce system D"d from
,S';" by adding II vcrtical planes "'I",, .. ,lTd'" pa,sing thr(1ugh midlines of opposite faces of
5 en as is done in Table I, Each of the ;'11 faces of D."I is divided into two primitives whose
total number is ~l/. hence r = 4.

2.3, The numbering sequence ()f faces and primitives of the CSS (see n 11umn "lofTablc
I) is chosen to satisfy the following cyclic ruk: (a) II faces of systems C., C"h' C",. J)" and
D"" an: laheled by subscript II from I to /I counterclod.wise. System, ,');" and D"d have ;'11

faces. We distinguish among their "top" and "bottom" f:l\:l's. Top faces are marked hy
Iwle, on the hlp and are numbered by /1 = I .... ,II, \\hilc bott()m faces arc marked by hoks
on the bottom and an: labded by,ll 1-11 in the saml.: direction: (b) primitives \.11' c.. and .5':"
I.:olllcide with their faces and arl' bhdnl acnll·dingly. The first primitive of the II-th face \.11'

systl.:lns ('''iI' c.". f)" :llld f) .•h has thl' sallll.: subscript II, (lthcrs 11+11 (systcms C"h' c." and
IJ.. ) (lr 11+11.11+2/1. ;lnd II +·311 (systl.:m f) .. i')' Thl.:Y ;11'1.: :tlso I.:null1l.:t'atl.:d In the I.:oulltn­
clockwise dirl.:l'ti\lll, Llch LICI.: (11' 1>",1 cOlbists of twp primitiws. kft alld right. Left top
primitivl.:s of f)"d :tn: Iahcled by ,/1, left bottoIll b~,/I + II, right lOp hy II + 211. and right
bottom pril11itivl.:s hy II + 311.

According. to (I) ~111\ Jinilt: s~ 1l1111l.:tric sy,lt:l11 IS :l union of h primitives, ill thl.: case of

thl.: ('SS " /!II ;tlld Olll.: Gill writl.:

1/ I' II't

S = U l) ,)"",,, 1in'

/1 I , I

(3)

SymIlll.:try opaations arc nUIllhered according. 10 the same cyclic rull.:', hl.:nce under
opaationl/ I tlw fUlld~lmental primiti\1.: .\', nlincidl.:s \\ilh the primitivl.: ')'1

or

I ..... II ("l )

It follows from the I.:yclic rule thai the lirstll syl11l11ctry opaations of any CSS are rotations
(more precisely, proper rotations) c;; 1 through the angles (II - I)' :2rr./n about the principal
axis. Other operations (sec Tahle L columns 6 9) are more complicated; they arc products
of basil.: operations (~; I with additional operations as rellel.:tions in planes (lh' (I, or (Yd' or
rotations ahout horizontal axt:s c: (these rotations through 180' art: denoted by 1/,):

('~; I fTl1" c;; 1(1\. c;; l(J'd. and ('~; lll~'i',

Both notations, H) and (5). will hI..: used in the furtht:r di,cussion: ("l) as a ruk in
algl.:hraic manipulations while (5) in 1110sttahks, sincl.: it contains 11101'1.: detail. Ckarly

I.,., ,h; ,Ii 1. .. ,.11; I' = I., ... fl = /ill. (6)

tit i, nc'cessarv tI, empha,i/e that in all "I' these product' a proper rotali"n r'; I follows rt:lkctions 'T' or a
nHation II,. Also !11;te that whik the ('perati"n an commutes with .my other "peration. an.". = q,ah' operations
a., ad' and II, (~ana.) do !1<>t <;ornmule with nperatiolls ()f other type.. For exampk,
c:: ItT, = fT,C,. ',I 11 tT.,c::;;· I. :\cconting tn this. npt..~r;tti\H1" f"f .• ri j • :tnd u: rnay he called antl- or skt:w-conl-
1l1utatl\'l.:.
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3. SYMMETRY GROUPS AND MATRICES G..

3.1. Symmetry operations form a group G = :51, };=, of order h. i.e. a set of elements
51,. g:.···.gh satisfying the following four conditions (or group postulates): (I) closure:
g"q, belongs to G. (1) associativity: 51, (fMf4 ) = (g,.q, )511..' (3) existence of the identity: 9, =e.
and HI existence of inverse elements H, 'E G such that H,H,-' = ~J, 'H, = 9,. If all elements
of a group commute: 9,9, = 9, H,. i. } = I .. , .. II. then G is called commutative or Abelian.
otherwise it is called non-Abelian. If a subset of elements HI.' ..• 9h of group G also form
a group. say. G,. then G I is called a subgroup of G. One group may have several subgroups.
and a given element of a group may appear in different subgroups. For example, 9 I = t' is
the first element of each subgroup of group G.

Symmetry operations of the FSS comprise tinite (if II < x) or continuous groups.
These groups are known as point groups because any finite symmetric system has at least
one fixed point which does not move under any symmetry transformation (such points
belong to axes or planes. or to their intersections). Since a trivial group G = {e} can be
associated with an asymmetric system. we define a tlnite symmetric system as that which
possesses a point group of order II > I. Symbols C. S:n' •••• DnJ which we used to denote
the CSS are introduced by Schoenl1ies for the corresponding point groups (Hamermesh,
1962; Falicov. 1966). Hence system Cn possesses point group C (known as a cyclic group).
system S:n-group S :n' and so on. Continuous point groups C" Cd. Co' D (). and D <:h

are symmetry groups of the CSS with the principal axis of complete axial symmetry. It is
convenient to treat them as the limit case of the finite point groups. n ...... 'l). We will study
the foSS with tlnite symmetry groups. Note that in accordam;e with Table I (columns 6·9)
group C. is the highest subgroup of all point groups. group S:" is a subgroup of Dm,. groups
C"h' Cn> and D" an; subgroups of group D"h. etl.:.

.1.2. In the previous section symmetril: systems arc dassilicd with respect to their
symmetry demt:nts (axt:s and planes). I kre we l:ontinue their desl.:ription bast:d on the
symmt:try operations. Let S he a l.:ertain FSS:.\' = U;. ,.\',. (I). Introdul.:e the identical FSS•
....." = U~'. ,......; and superimpose them so thal lhe fundamenlal primitive S', of system .\" is
l.:arried inlo .,.j, of st. Then the primilive S; of S' willwinl.:ide wilh a certain primitive of
S. say S.. or. more predsdy. wilh S.. I',1I bel.:ause the inll.:ger I\' (I ~ II' ~ II) depends on} and i.
In al.:l.:ordanee with H). s; = S.. IJ,I, = 9"",,,,\',; on lhe other hand. S; =g,.'.j', = g,S, = 9,!!,S"
HetKe

wilh the property

g,,",,} = 9,9,. i.} = I •.... II

Ir(j, I) = j. II'( I. i) = i.

(7)

(S)

Symmetry of the FSS (i.e. the struetun.: of lhe assol.:iated symmetry group) is completely
described by products (7) which form a special II x" matrix known as the group (multi­
plication) table. We will usc it in a transposed form and call the matrix G" :

91 !I, 5/h

G" = [q.f,.r1t J-1 = [g,.q.]~J.I =
9: y,g~ ghg~

(9)

,
9h gigh .'Ii;

t Recalling that 5, ...f/,SI' we have to noIe that ir operation g, is a proper rotation ,-:" then system S' is an
exact copy or s. However. ir g, is a rel1ection (1. or a rOlation II, or their products with c~ then system S' must be
a mirror rel1eetion copy or 5; otherwise. ils primitives will he laheled inconsistently with primitives or S. For
example. ir S = D,h' one has to introduce rour copies or Dnh : an exact copy 5', two reflection copies S" and S·
corresponding to (1, and (1.. respe..:tively. and SIV ohtained rrom S by rotation about c•. Since fI, = (1 (1 svstem
51' is a double reflection copy or s. . . n,.
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3.3. One can write (h-I)! matrices G.... for the same group G = {g, };~ I since there are
(Ir - I)! sequences of Ir group elements (g I == e by convention). The cyclic rule for labeling
of the primitives and symmetry operations described in Section 2 reduces this number to
one. Moreover. it permits one to present matrices G" (9) explicitly. To do so we introduce
the parameter r == (\. - I)n which is equal to O. n. 2n and 3n (v l, 2. 3.4) and six circulant
matrices B;". k = 1.2..... 6. of order n. Each matrix contains only n different elements
b, _,. b>,..... h,,+,; we call them the basic dements:

h, +, h>, h".,

Bill _
lJ" -+.- r h, +r /1" 1+,

, -

h:+, h , ., hi .,

h, ~, hfl "'r h>,

lJ;') =
h, ... h, .. h, .. ,

hit ~ r h" I. , h, .,

I,II ~ I h" 1 ~ r h, .,

8;') =
h, H /'" ~ r h:. ,

----_.
h" If' h" ~ ... r h" .,

hnt-, hi'" h" I"

8;-1' = h" t t r hu ., h" .:; ... r

h", h: .. h" ... r

Ii I " h.:; j>r h" ..

8;51 = h:'t-r h , .. h,.,

",,;..r hi. , h" I ..

h: ,r h,., h" ., h, .,

h.1or h.,t ~r hi .. , h: ...
8;"1 =

hi ., h: ., h" 1 _r' h,,+r

r = 0, 1I.1n. 3n.

( (0)

( II )

( 11)

( 13)

( 14)

(15)

Matrices B;5' and B;1oi are symmetric while B;ll_ B;') arc finite Toeplitz's matrices.
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Substituting symmetry elements g,,+(v- 1)/1:

1221

hl'+r=gl'+(v-Iln. 1l=I. .... n: v=I •.... p=h,in. r=(v-I)n (16)

we obtain six circulant matrices G~k). k = 1.2....• 6 and use them to write down the explicit
expression for matrices GM• (9):

G.. (Cn) = [GlJS)]"=n

G.(S,.) ~ [
Gh5, G(51

L~
n

G
I5I

Gh
bl

n

G.(C.,) ~ [
Gh

51 GOIn
] ~ G.lD.)

G~SI G(SI
0

Ir_ 2n

G.(C_) =[ G I 51 G~" L.0

G~SI Gill
0

( 17)

(18)

( 19)

(20)

G..(D,td) =

G(51 G
tsl Gill Gill

Il In 2n In

G~5' G(S, Gill Gill
10 .l" 1n

G~~.' G(I~i G HI CIIl
Il J n

C I51 G( 5) Gill GIll
J In 1n " ()

GlSI GHI G~~.' Gill
0 " J"

G(5) Gill G ( 5) G~~l
" 0 3"

GIS) G
I41 G~('l Gill

1" In n

G (5 ) G~;,' G(f>, Gill
In " 0

(21 )

(22)

For 11 = 4 these matrices arc presented in full in Table 2 where an inleger j stands for
<t symmetry operation g,. j = I•...• h. Matrices G...(Cn), G.. (S1n) and G.. (c"h) arc symmetric
which indicates that groups C". S~n and Cnh are Abelian. groups c,/V, D" and D"h become
Abelian only for n = 2 while D"d is non-Abelian regardless of n.

Equations (17)-(22) may also be written in the form

h

G... = L P(gdgk.
k-)

where P(gd are special permutation matrices of order II:

(23)

(24)

Here 15k ." I i.') is the Kronecker delta and an integer Il'(j. i) is defined by (7). Non-zero elements
of matrix P(gd. which are equal to one. indicate all pairs (j, I). such that gig; = gk where



9,
,-I

J
o c

4

1 2 3 4

1 1 2 3 4

2 2 3 4 1

3 3 4 1 2

4 4 1 2 3

J 9 = c l - 1 9 = 5,·5
, 4 , 4

1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8

2 2 3 4 1 6 7 8 5

3 3 4 1 2 7 8 5 6

4 4 1 2 3 8 5 6 7

5 5 6 7 8 2 3 4 1
>---
6 6 7 8 5 3 4 1 2
-- -_.. -- -
7 7 8 5 6 4 1 2 3- - f---- -
8 8 5 6 7 1 2 3 4

I 1 I-S
'I, c4 9, ' c 4 "h

J

1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8

2 2 3 4 1 6 7 8 5

3 3 4 1 2 7 8 5 6

4 4 1 2 3 8 5 6 7

5 5 6 7 8 1 2 3 4

6 6 7 8 5 2 3 4 1

7 7 8 5 6 3 4 1 2

8 B 5 6 7 4 1 2 3

, -1 9 a cl-So
J

'I, o c
4 I 4 •

1 2 3 4 5 6 7 B

1 1 2 3 4 5 6 7 8

2 2 3 4 1 8 5 6 7

3 3 4 1 2 7 8 5 6

4 4 1 2 3 6 7 8 5

5 5 6 7 8 1 2 3 4

6 6 7 B 5 4 1 2 3

7 7 8 5 6 3 4 1 2

8 8 5 6 7 2 3 4 1

s_ D'~KnJ('H

9 0 C ,-I _ j-S _ j-g
9. = c·- 13

j I 4 9, - C 4 0h 9 j - C 4 U
2 J 4 0y

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 2 3 4 1 6 7 8 5 12 9 10 11 16 13 14 15

3 3 4 1 2 7 8 5 6 11 12 9 10 15 16 13 14

4 4 1 2 3 8 5 6 7 10 11 12 9 14 15 16 13

5 5 6 7 8 1 2 3 4 13 14 15 16 9 10 11 12

6 6 7 8 5 2 3 4 1 16 13 14 15 12 9 10 11

7 7 8 5 6 3 4 1 2 15 16 13 14 11 12 9 10

8 8 5 6 7 4 1 2 3 14 15 16 13 10 11 12 9

9 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8

10 10 11 12 9 14 15 16 13 4 1 2 3 8 5 6 7

11 11 12 9 10 15 16 13 14 3 4 1 2 7 8 5 6

12 12 9 10 11 16 13 14 15 2 3 4 1 6 7 8 5

13 13 14 15 16 9 10 11 12 5 6 7 8 1 2 3 4

14 14 15 16 13 10 11 12 9 8 5 6 7 4 1 2 3

15 15 16 13 14 11 12 9 10 7 8 5 6 3 4 1 2
-I-f-- - - - -- .- - .- --

16 16 13 14 15 12 9 10 11 6 7 8 5 2 3 4 1

c' 1 , ~

'I,
,9 .-13

'lJ <I, - 54 ... C (I Y,Jl:C4 u
24 4 d

J

1 2 3 4 5 6 7 8 9 10 11. 12 13 14 15 16

1 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16

2 2 3 4 1 8 5 6 7 10 11 12 9 16 13 14 15

3 3 4 1 2 7 8 5 6 11 12 9 10 15 16 13 14

4 4 1 2 3 6 7 8 5 12 9 10 11 14 15 1S 13

5 5 6 7 8 1 2 3 4 13 14 15 16 9 10 11 12

6 6 7 8 5 4 1 2 3 14 15 16 13 12 9 10 11

7 7 8 5 6 3 4 1 2 15 16 13 14 11 12 9 10

B 8 5 6 7 2 3 4 1 16 13 14 15 10 11 12 9

9 9 10 11 12 16 13 14 15 2 3 4 1 5 6 7 8

10 10 11 12 9 15 16 13 14 3 4 1 2 8 5 6 7

11 11 12 9 10 14 15 16 13 4 1 2 3 7 8 5 6

12 12 9 10 11 13 14 15 16 1 2 3 4 6 7 8 5

13 13 14 15 16 12 9 10 11 6 7 8 5 1 2 3 4

14 14 15 16 13 11 12 9 10 7 8 5 6 4 1 2 3

15 15 16 13 14 10 11 12 9 8 5 6 7 3 4 1 2

16 16 13 14 15 9 10 11 12 5 G / 8 2 3 4 1

NOTE: IN ALL GROUP TABLES Gw INTEGER J STAl ES
FOR 9,-
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Table 3. Matrices P(g.H •. ".)

TYPE MATRIK P(91' , P(91'+n l P(91'+2n) PI91'+3n):: OF ORDER
CSS h 1'·1 •...•n "'·' .....n 1'·1 .....n Jj-l .....n

1 Cn n 31'
NOTE:

2 52n 2n ~ ~ '"+~t '"f1~-, JI'

3 Cnh 2n Ptd m1 '"+*1 '"{ ,1JI' JI'

e""

P-hi G:-t44-5 AND 2n

On JI' J, • in • In

~~~~
.I"6 D nh 4n

J" J" J" JI'

J" J" J,. J~

.I"

~
.I" J"

7 D nd
4n J" 3 J" J"

.1"-, J" J" J~ .1

J" .1"-1 J.u .1 .i,.

k is fixed. Rewrite (23) in the following form

t223

" "-.It,,
G" = I I 1'(9" ,I.' )1")9,, 'I" Ii,,'

11- I ,.... I

Permutation matrices 1'(51" H' . II.) are depicted in Table 3 for all seven cyclic groups.

4. SYMMETRY MATRICES

4.1. Introduce another set of It permutation It x It matrices

(25)

(26)

Non-zero elements of Q(y,) describe a sel\ue:nce of the: primitives Sk == S".W) of a tinite
symmetric system S which will coincide with the primitive S; (j is tixed) of the identical
system S' when its fundamental primitive S') successively coincides with all S,(i = I•.... It)
of S. Thus matrix Q(g,) can be treate:d as a spccial form of presentation of the i-th row of
matrix G". (9). Since the whok set of matrices Q(y,). i = I•...• /z is isomorphic (i.e. in a
one-to-one correspondence) with the matrix G" of the FSS. it is proper to call Q(gJ the
symmetry matrices.

4.2. Symmetry matrices arc not necessarily symmetric. In fact. 'I'k(q,) = Jk.,,( ,.,) #- 0 if
gk = gIg,. while 'Idg/) = J".'IJ.kl #- 0 if g, = glgk' Hence the reciprocal relation q,k(g/) =
'Ik,Cq,) simply means that gJ.. = .'MI, = .q/gk; that is. that g/ = e. Thus matrix Q(gl) is sym­
metric if and only if g/ = e. i = I....• It.

Notice the following properties of symmetry matrices QCq,) :

'11/(9/) = I. i = I ..... /z

Q(g!l = I".

"I q,d9,) = I. i. k = I. .. .. It.
,~ )

Symme:try matrices corresponding to the CSS are shown in Table 4.

(27)
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4.3. Table 4 is very similar to Table 3. However. symmetry matrices Q(g,) are much
more interesting and important than matrices P(g,) of Table 3 because they possess the
fundamental properties. To study them we have to introduce the notion of the group
representations. It is said that the set A of h nonsingular n x n matrices A,. j = I. .... h.
form a (matrix) group under matrix multiplication. if these matrices satisfy the following
group postulates: (I) dosure: product A,A,U.j = l. ... . Ir) belongs to seL..L (2) associativity:
A,(A,A k ) = (A,A)A.(i. j. k = I..... il). (3) existence of the identity: A I = I". and (4)
existence of inverse matrices: A,' I belonging to A. Such a matrix group is called an
n-dimensional representation of (abstract) group G = ~ g,; 7= I if matrices A, are in a one­
to-one correspondence with elements g,. i.e. if A, == .4(gl) and

A(g,)A(9,) = A(9,9;)

ACYl) = I". A(g,·I) = AICYI)

i.j= l. .... Ir.

Furthermore. if there exists a matrix U such that

(28)

(29)

where Tey,) are block diagonal matrices of the same configuration. then tht: matrix rep­
resentation A is called reducible. otherwise it iscalled irreducible. Denote by r,. r = l. .... fl.
the roth irreducible representation or group G = :.elI; 7 I' It contains Ir unitary matrices (we
consider linitt: groups) of ordt:r fI,:

(30)

Ekments I"fl(lf,) art: the roots of unity. II' dim I,( == tI,) = I. I,(Y/) = I, II elf,). j = I....• h.
In such a case the second and third subscripts may be omitted. Let us fix the index j in eqn
(30) and cakulatt: the nUll1bt:r of ekments Inf1ell,) or all irn:ducible n:presentations. Since
'1..// = 1..... fI, and r = 1..... 1/. it is t:quallo r.:'_lfI,2. In Jl:cordance with the Bernside's

T"hl<: 4. Syl11lll<:lry Illatric<:s (jIll", ,. ,,'OJ

TYPE MATRIX Olg"l Olg"'n l Olg".2n l Olg"'3n):: OF OROER
ess " "-I .....n ~·l ..... tl ,u·l •....n ,,-I .....n

1 Cn n J"
NOTE:

2 5 2n 2n Pt:1 ~J" Jj,l .1

[~t'" f JJ •

H4 "
3

Cn"
2n Pt:1

J 1
. 1

Cn"
n

~ bf14-5 ANO 2n

On J"~l.~

J~ J" J" J

"
J" J" J" J"

6 On" 4n
~n'2" ~.'2 "J"_llJ J

,,"ZIJ

J J J
n-2-1J

J
"·Z·/J.,,·2/.01 "·1jJ.

J J J" J

"" "
~n'2" J".Z.'" fl•• ,." "'n.' "7 0"" 4n

J" J/J..' J,u .. 'J"

J J .,-1j,;. J
n·2-~,,"Z-!J ,,"Z/J.
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H

L n} = h.
,* ,

1115

(31 )

Hence H ~ h. In fact H = h. if and only if, all irreducible representations are one-dimen­
sional: n, = I. r = I..... H. Since j runs from I to II. it follows from (31) that the total
number of elements of all irreducible representations is equal to h2

• They may be grouped
so as to form a special II x h matrix U in which the elements of each one-dimensional
representation establish one column while elements of a n,-dlmensional representation form
a set of n; conseclltive columns. Each column of U is normalized to the unit length and
(n,/h) 1 2is the normalization factor. Thus if!, is one-dimensional. the corresponding column
of Uis

(32)

if!, is ",-dimensional. it forms columns 11,1 I. "r12.. ··• 11,21' IId2.· .. , IIrn,n, and column IIr ;. is

II,~. = [(",/h) 12!,.,.• (gl), .... (fl,/II) 1!2!r,.,(g,,)J:x, }' = I, ... , n,. (33)

It should then be evident that the i-th row of matrix U consists of the elements of all
irreducible representations corresponding to the symmetry clement g,:

(34)

Therefore, matrix U may be written in short as

(35)

In this notation suhscript s is associated with three subscripts r, y, '1.: s <:> (r/'1.). When '1.
,tnd " run from I to 11, and r from I to II, subscript s runs from I to II in accordance with
(31). Matrix U corresponding to group D~h is given in full in Section 6.

Matrix cI~ments !,,/I(Yj ) of all irn:ducible representations of any group satisfy some
orthogonality rclations (Hamermesh, 1962; Falicov, 1966), in particular,

(36)

where !rz/I(Yk) is a complex conjugate of Tr>/,cqk)' Hence matrix U is uninormal

V 1 = VB == Dr

(symbol "H" means Hermitian transpose) and

(37)

The irreducible representations of point groups are known. their dimensions satisfy the
inequality: I ~ fIr ~ 5. The irreducible representations of groups corresponding to the CSS
are one- and two-dimensional only, and are given in Table 5. By observing this table. one
may conclude that Abelian (or commutative) groups Cn • S2n and Cnh have only one­
dimensional irreducible representations. while representations of non-Abelian groups C

nv
•

Dn , Dnh and Dnd are both one- and two-dimensional.
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GROUP

4-5 AND

Tabk 5. Irreducible representatIOns of groups C. 5 :n' Ch' C .. D•. D"h and D.",

, 1

~l' .-. I J

E'
,.-1

'r: 9... Jn:!
n ... " 1

E'
" .

4.4. The following two lemmas present the fundamental properties of the symmetry

matrices Q(gl)'

Lemma I. Matrices Q(gl)' j = I. _.. ,It, comprise an It-dimensional representation Q

of group G = :.'1,: I; I'

I'roo( First, according to (27). Q(gl) = '", Second, consider a matrix product
Q(.'I,)Q(.'I,) for.'l, and.'ll bdonging to (j:

QCq,)QCq,)

because

if I = 11(.1', i)

otherwise.
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It follows from associativity of the triple product

=g,(g,g.) =g,g"I/,'1 = g..·li...t'.'11

that

If(i. lr(j. k» = If(lr(i.j). k) Lj. k = 1. .... 11

and therefore

Q(gJQ(g,) = [(j',"I,.. r",.,d:~b I = [q,dg"/I.'l)]:~'= I

=Q(g.. /I.,I) = Q(g,g.). s.t = I. . ... It.

t227

(38)

which means that Q(gJQ(gr) belongs to the set Q. This equation does not contradict (28)
because matrices of the group representations are conventionally written in a transposed
form so that. for example. a matrix-vector product is written as xTA. Therefore. if we
denote Q(g,) = AT(g,). 5 = l. .... h. then (38) will take the standard form (28). Next. let
9, be equal t09,-I. Then Q(q,)Q(g,-I) = Q(gl) = lh and

Q 1('1,) = Q(g, I) • .I' = I. ... .11. (39)

Finally. [QC(JJQ(CJ,l)Q(y..) = Q(yJ[Q(CJ,)Q(q,,)J by the associativity property of a matrix
product.

o
In fact. sYlllmetry matrices Q(q,) . .i = I....• II form a special reducihle representation

of group (i = LCJ, }':-I known as the regular representation (Falicov. 19(6). This follows
~m .

1.1'1/11/10 2. There exists the explicit hlock diagonal decomposition of matrices Q(CJ,).
i = 1•. ••• 11:

Qt.q,) = UT(y/)U" • .i = I. ... .11. (40)

where U and U" arc defined by (35) and (37). respectively. and TCq,) is a block diagonal
unitary matrix:

v

111 times

j= 1..... 11

v

1If( times

(41 )
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or in short

S. DI:-'KE\dCH

(42)

Proof Equation (40) is the matrix form of the following orthogonalit: relation

i. I. k = I ..... h (43)

which generalizes the identity (36).

o
Thus besides the uninormal matrix U. h~ matrix elements Tn/I(g,) of all irreducible

representations of group G form h block diagonal unitary matrices T(g/) and all of them
satisfy eqn (40).

5. MATRICES I:-.lTRODUCED ON TilE FSS

5.1. In constructing matrices corresponding to the FSS. we must obey the special
symmetry law [derived from eqn (4): S, = g,S,. I = I. .... h] which states that we arc free
to introduce the mesh and all variables and functions on the fundamental primitive SI only.
The mesh. variables and functions associated with the primitive ."", must be obtained by
applying the symmetry operation g, to the analogous characteristics or 5l l • i = I .... . h. It
is convenient to present all matrices introduced on the FSS in a hlock (partitioned) form
associating the hlocks (suhmatrices) with the primitives. Let A>I< he such a hlock matrix.
Then it is of order IIIh and its hlocks A". i. k = I ....• h an.: or order Ill. where h is the
numher of primitives and III is the total number of variahles (for instance. degrees of
freedom) of any single primitive:

Theorem I. Matrix A .. (44) il/troduced 01/ the FSS has the /olllll\'ing presentation:

A* = L Q(.'!,) @ AI,.
1--1

(44)

(45)

lI'here Q(g/) are sYlllmetry matrices (26). A '/ are hlocks oj" the jirst h/ock I'm\' of A .. and the
sYlllho! ® stands jill' Kronecker IIII1!tiplicationt.

Proof Once again we consider two identical FSS. namely. 5 = U;'. 15, and ...," =
U~. ,S; and coincide them so that S', = S, and S; = S'd ,.J)' Suppose that matrix A>I< =
[A,.,];:,., corresponds to system S while matrix A~ = [A;" 1;'. '0 I to S'. Then

A;., = A.. " •. " ... (,." p.I = I. ... . h. i is fixed.

On the other hand. II ~ = II .. because both systems arc identical. hence

,-t;., = A,.,. p.1 = 1•.. .• h.

t If Band Care two arhitrary I' '" (/,md,:( "matrices: 8 = [h"];',,., and C = [c",J~'., ,.lhen80 Cisdelincd
as the following (1") )( (".1') matri~ (Bellman. 1960; Marcus and Mine. 19(',t):

B 0 C = [h" Cr,'., = [[h,;I,·r,'•.• ]:','. ,. (,t(l)
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Thus

Letting p = I and noting (8). we have A If = A'.Mi}.11 or

h

A Ii = L A",J,.MII.tl'
.\.= I

1229

Multiplying both sides by ()•. "U) and summing up with respect to j from I to II. we obtain

Ir h h h

LA II()•."I'.» = L Ai" L J,."lj)J',"'U.i) = L A i,c5,. = A,•.
,=1 ,"=1 1=1 ~=I

Or. by virtue of (26).

A,. = Lq,d9,)A". i. k = I. .. .. 11.
,= I

(47)

Equation (45) follows from here in accordance with (46); we call it the Structural Formula.

o
Rcmark. According to the last eqn of (27). there is only one non-zero matrix term on

the right side of (47) and this term has a scalar factor. SHY. q,.C91..) which is equal to I. Thus
eqns (45) and (47) mean that every block A,. of matrix A. is equal to one of its blocks
located in the first block row: Ai. = A II,,' where.io = jo(i. k) is determined by the symmetry
matrices Q(.t/,) • .i = I..... It. Blocks A ,,(1 = I... .• It) will be called the basic blocks of A.
and the first subscript will be omitted: A, . .i = I..... II.

5.2. Matrix A. (44) mayor may not be symmetric regardless of symmetry of the
corresponding mechanical system. Matrix symmetry follows from reciprocity laws
(relations) for corresponding quantities or equations. and any symmetric block matrix of
order 11I1t contains not more than m11(11111 + I)/2 distinct clements. Symmetry of the mech­
anic.lI system leads to the Structural Formula (45). According to (45). associated matrices
have no more than 11I~1t ditTerent elements belonging to its basic blocks. If such a matrix is
symmetric. then its basic blocks A ,. A~... ..• Ah arc divided into two parts: blocks of one
part arc mutually transposed (A. = A/'). while blocks of the other part arc symmetric (self.
transposed). and the total number of distinct elements reduces by half.

Matrices A. (45) may be written explicitly. First let us replace the basic elements
h,'H in the tirst four circulant matrices B~') (10)-(13) by basic 111 X111 blocks A"+("_I)" of
matrix A. (44). r == (v-I)" = 0.".2". 3n:

A, .. A 2+r A,,+r

A~" = A" toT ..I,.., An - ,+r

A ~+r A,'+r A, ..

A, +r An+r A~+r

4(:) = A ~+r A, +r A.I+r
. r

A,,+r An_I +r A I +r

(48)

(49)
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I

I

AnH A" 1 -, I
A 1 ., .-4" ... , I-1" 1 =. ,

I
I

A" 1 -, An :.'1

...,'/ .... , A I.,

A ~.I
A" I~, An .,

=

A I .,

(50)

An I H

(51 )

r = 0,11. :'n, 311,

Then, by substituting symmetry matrices QC'I,) ofTablc 4 into the Structural Formula. one
can verify that matrices A. (45) have the following configuration:

(52)

(53)

(54)

(55)

(56)

(57)

More detailed symmetric matrices A. are given in Table 6 for 11 = 4. Symbols Sand Tin
this table state that the corresponding blocks arc symmetric or transposed. respectively,
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Table 6. Symmetric matrices :'. corresponding to the CSS. n =4

55 SSSS

1 8 910 10',' 13 '415 161
6 1 ,1' 9 10 to" 16 l3 141$

5 " lOt 9' 9 10 15 16 13 14

8 '5 10 'Of "9 14 1S 1$ 1)

J 1 " 1$ ,.I 1J ,1 TOT 10 9

1t 3: ""'5 ,... 9 gf 10f 10

1 l' 14 11 16 15 10 9 ,'lOt

I 15 14 1] l' 10' 10 9 1)T

1 1 ] Z' 6 1 II

SYMMETnlC

Norl fN All MAnU(l$ INrEGER I STATES 'OR fllOCfI( A,

5.3. Consi(kr thc spcl:tral propcrtics of the Strlll:tllral Formula (45) :

Theorem 2. Matrices A. (45) hat'e the explicit block diagonal decomposition

(58)

w/ll're V", is IIl1inormal

(59)

1\. is Mock diagonal

h

1\. = L T(g,) €I A/,
,- I

(60)

and matrices T(9j ), V and VII are defined by (41 )-(42), (35) and (37), respectirely.

Proof. Kronecker's matrix product possesses the following property (Bellman, 1960;
Marcus and Mine, 1964): if A, Band Care pxp matrices and F, G and Hare qxq
matrices, then

(ABC) €I (FGH) = (A €I F}(B® G)(C® H). (61)

Hence, if matrix B is diagonal or block diagonal then matrix B €I G is also block diagonal.

'A. nllO-"
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Therefore introducing (40) into (45) we obtain the block diagonal decomposition:

A. = 2: UT(g)C H ® (fmA,l,,,)
I~ I

o
Remark. In accordance with HI). block diagonal matrix A. has the configuration:

~
III times A2

A =• ~
!l 2 times

~
1/" t iIlles

(62)

or

1'=1. ...• 11 (63 )

II

A. = [A"/;}~:/J" I, A',/I = 2: T"/,(91 )A I • I' = I. .... H.
I" I

(64)

mocks A, arc of order 11m,. III :;:;; 11m, :;:;; 5111, and submatrices A"/I have order III. In short.
matrix A.. may be written as

(65)

or cvcn

(66)

Thus the majority of the FSS eigenvalues are at least of 1I,·fold. I :;:;; II, :;:;; 5. In particular.
the CSS possess double eigenfrequencies and critical loads.

With no loss in generality. we assume that matrices A", (45) arc real. Then if A. is
symmetric. the block diagonal matrix A. is Hcrmitian: A. U.A. U~I and A", = A ~ =
A~ = U.A~'U~. hence A~ = A. •.

Consider now Theorem 3 which states that all operations with matrices corresponding
to the same FSS preserve the Structural Formula (45).
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h

A.+B.::;: L Q(9,)@ (AI+BI )
1= I

h

A.B.::;: L Q(91)@Cj ::;: C••
,= I

Proof In accordance with (45) and (47),

h h

A. ::;: L [Q,d9,)Aj J::k-t. B.::;: L [qik(91)BIJ~k= I'

i= I 1= I

Hence.

h h

A.+8.::;: L [q,d!/,)(A,+B,m4=1 = L QCq,)@(A,+B,).
1= I 1= I

Next. we consider a matrix product. Invoking (38). we have

h h

= L Q(q.)QCq,) ® A,8,::;: L QCq,,",,) ® A,8,
:r,/_ I ~./.-,I l

wherc

I,

C~,· ::;: L Q(9"·I"'.)@ A,B,.
r-I
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(67)

(68)

(69)

Thus C~'· is described by the Structural Formula. Since a sum ofsuch matrices also possesscs
this formula. cqn (68) is proven, Let us find thc basic blocks C, of C. ::;: A.B., Denote
blocks of C~,· by C~;l. i, j::;: I, ...• h. Then its basic blocks are

h h

C;') == CIt] = L qIICq"II... I)A,B, ::;: L <51,"·III'II..'I.IIA,B" j::;: 1, ... , h.
I-I ,.1

Sincc 1I'(W(t. s). I) ::;: w(t. w(s. I» ::;: II'(t, s). we obtain

I.

C;'I = L ()I,nfu)A,B" j = I, ... ,h.
'.1

A single non·zcro tcrm in the right sidc is detcrmined by w(t. s) = j. i.e. by .q,g, = 9,. which
means that t = tU,s) and therefore

C)') ::;: A,Bilf). j = I •...• h

wherej(s) isdef1ned by the matrix GM" Hence, the basic blocks ofmatrix product C. = A.B.
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(68) are

S. DI"';;:HKH

II

C, = L c;" = L A,B"". j = I. ... . h.
""" I \"= f

(70)

Finally. the existence of egn (69) simply follows from the Structural Formula for non­
singular matrix A*. and our goal is to compute basic blocks .J,. j = 1. ... II. of the inverse
matrix A; I. To this end. matrix A * I is presented as a triple product A * I = C*A* I U~ and
in accordance with (60) and (65).

II

A* 1= L T(9,) ®.:I, = [[A, l(j,,"J,J~I~ d;',= I'
1-;:, I

(71 )

Assuming that blocks A, I. r = 1. .... H are found numerically by inversion of blocks A,
(63). we present them in the partitioned form (64)

and propose that similar to A"/I (64).

II

t\nll= L '''llelf/l.·t,. x.#= 1. .... 11,; r= 1. .... 11.
I - I

(72)

(73)

Then multiplying hoth sides of (73) by (1I,/h)r"II(Y'). summing up with respect to x and II
from I tOil, and r from I to If. and t<lking into account the orthogonality relation (36). we
ohtain

Thus

i = I .... . 11. (74)

n
L..J

RClllark I. Basic blocks C, (70) may be written explicitly:

n ,~,.It: 1/

(""+11' .11" = L L ..1'" _I", II"B",,:
JI, - I I',·" I

Jt = I ... .. 11; \' = l •...• p.

subscripts 111." which depend on \'. arc depicted in Table 7 for all CSS.

(75)

RCII/ark 2. Equations (68). (75) and (69). (74) arc very etftcient in computing the
radiation m<ltrices (heat transfer problems).

6. SOLUTION OF LINEAR EQUATIONS I:'-lTRODUCED ON THE FSS A:'-lD SYMMETRY OF
TilE APPLIED LOADS

6.1. The explicit block diagonal decomposition of matrix ..1* (45) given by Theorem 2
leads to substantial simplitications in the solving of linear cqu4ltions corresponding to the

FSS.
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Table 7. Basic blocks C•• ,._ II. of matrix C. = A.B.

1135

n J:!':"/n /.I '" 1•...• n
C/.I+{v_tln '" LL A BI.l,+(v,-')n mv v'" 1•..•• PIl,=' v,='

,

GROUP p mv, Cli C/.I+n C/.I+zn CIi+Jn COMMENTS

Cn 1 m,'" i,

m,'" i, i, ... n
/.I-li,+1. IF li-li,+1>0Szn 2

i, =Imz '" iJ + n i,
/.I-Ii, +1+n. OTHERWISE

m,'" i, i, + n
Cnh 2

mz '" i, + n i,

Cnv m, '" i, i, + n 11.l,-1l+1. IF Ii,-Ii +1>0
i '"AND 2
z 1i,-I.I+1+n. OTHERWISE

On mz '" iz + n iz

m,'" i, i, + n i, + 2n i, + 3n

mz .. i, + n i, i , + 3n i, + 2n
11.1-1.1,. IF 1.1-/.1, >0Dnh 4

i ..
mJ '" iz + 2n iz + 3n iz iz + n

J 1.1-1.1, +n. OTHERWISE

m4 - iz + 3" iz ... 2" iz +" iz

m," i, i, ... n i, + 2" i, + 3"

m
2

.. iz + n iz i4 + 3n i4 + 2n 11.1,-1.1. IF 1.1,-1.1 >0
i •

Dnd 4
4 1.I,-I.I+n. OTHERWISE

mJ " iJ ... 2n iJ + 3n i, i, + n

m
4

.. iz + 3n iz + 2n iz + n iz

Theurem 4. A system uf mh linear equations

(76)

defined on the FSS with symmetry group G. is divided into fl uncoupled subsystems of order
llItl, (I ~ n, ~ 5), each cuntaining n, unknown slIhreetors Yrl

A, [y" , ... ,Yrn,] = [col' ...• ern,]. r = 1, ...• H

Irhae A, is determined hy (63)-(64) and

(77)

y = I, ... , n,; r= I.... ,H. (78)

Om'e suhsystems (77) are solt-ed. the initiallinknoll'ns are found from

/I (")1' ~ ",
Xi = L -~ L Yr";r,,.,(gJ.

'.1 11 ,'.x- I

i = I, .. .. 11 (79)

where Yr,·, he/ong to s/lhl'ector Yr,· = [Yr,'x]~'- 1. ,'= I.... , n,.
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Proof Substitute (58) into (76) and then premultiply the result by U~ (59):

or

(80)

where

(81 )

Subvectors cr, are calculated by (78) in accordance with (37) and (59), and

(82)

Written in full. system (80) has the form

.I'll

~
/II timcs A.,

A,
~

/I~tillles

~
fI" times

r~ I

l'l
w _".

I'. lin"

('1"1

('~fI,

('
fin"

(X3)

and may be presented as (77). Having obtained solutions of subsystems (77), one shall
compute vector x. = U.y. whose subvectors are determined by (79) due ttl eqns (35) and
(59).

o
To estimate the etlkiency of this method we compare it with Gaussian elimination, the

standard widely used procedure. To simplify the problem, we assume that all of the matrices
under consideration are of a full scale. Denote respectively by ,Hi; and Af~; the number of
operations (multiplications) and storage requirements for Gaussian elimination, and by
M~ and ;\/~ the analogous quantities corresponding to the symmetry approach. Then

while

Hence the clliciency of the symmetry approach can be described by two characteristics

(X4)
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6.2. The efficiency of the symmetry approach depends on symmetry of the applied
load. Although hitherto nothing was said on this. some assumptions have already been
made by default. To reveal them we divide the whole set of the applied loads into two
subsets (which can intersect): the active and the parametric loads. We define them with
respect to their locations in matrix equation (76). The active loads are located on the right
side: they form the load vector h•. The parametric loads occupy the left side of (76); they
participate in the formation of matrices. hence. they are inertia. damping. gyroscopic. and
circulatory forces. thermal loads. etc. Some of them such as thermal loads. for instance.
may be parametric and active simultaneously. In accordance with Theorem 4, matrix A.
of eqn (76) corresponds to the FSS with group G. This group describes symmetry of the
system. i.e. symmetry of its geometry (including supports) and materials. Since matrix A.
also depends on the parametric load. it was implied tacitly that the parametric load is
symmetric too. Moreover. it was assumed that its symmetry is identical with the symmetry
of the unloaded system. Evidently, this is not necessary. Let us denote symmetry of the
unloaded system by 5, and symmetry of the applied parametric load (loads) by 5~. Then
the actual (total) symmetry of the loadt.'d system is defined as the intersection of 51 and 5~

(85)

Hence. the loaded system will be symmetric if 51 and 5; have common symmetry elements:
axes and/or planes. Jt is useful to note that the intersection of two congruent axes cn , of 5 I

and cn: of S; is not necessarily a symmetry element beC<lusc axis Cn = Cn, ncn , may have
order one. Axis ('" will be a symmetry clement of S (85) if fI =ged (fl i • 1l~) > J where "gcd"
means greatest common divisor. LeL (i ,. G; ami G be symmetry groups corresponding to
'\'1 ••,>'; and S, respectively. and 1r1.1r; allllir he their orders. Thcn G is a common subgroup
of (i 1 and (i:. not necess~lrily the largest. and II ~ gcd (Ir I' II :). Jt is convenient to treat .S'
as a composite system containing two subsystems: a rcal ,)"1 'lnd an imaginary S; enclosed
into ,)',_ Then each primitive of S consists of Ir dll primitives of .S\ and of II :/11 primitives of
S;. In fact, the primitives of S arc

(X6)

They arc subjected to the pammt:tric load distributed ulong SI in accordance with
(h~/h)S:;l. All of the FSS composed of two CSS, one within the other. are shown in Table
8.

Tahlt: X. Th.: high,:sl symmetry of systt:ms wmpost:u of two CSS

~
Cn S2n Cn h Cn y On On h °Sl 2 2 2 2 2 2 n2d

Cn Cn
.. Cn Cn Cn Cn Cn Cn1

S2n S2n Cn Cn Cn Cn S2n
1

Cn h Cnh Cn Cn Cnh Cn1

Cn y Cny Cn Cny C
1 ny

On On On On
1

On h SYMMETRIC °nh Cnv1

On d I.. n =gcd (n 1• n2)I Dnd1
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6.3. Theorem 4 imposes no restrictions on the load vector b* (76). hence the efficienc)­
of the symmetry approach given by (84) is obtained for a certain nonsymmetric active load.
However. if the active load is symmetric and its symmetry is identical with the actual
symmetry of the FSS. the load vector h* consists of h identical subvectors

(87)

Substitute (87) into (78):

(88)

Assume that the actual symmetry of the FSS is. for example. C. Then one can flnd from
Table 5 that group C has It ::= n unitary irreducible representations r, with ekments

'r,ll(yd =: rd 1(.tid =: dgd ::= ;;~ 1 = exp (ir(k - I )2n:!1I). i = \, - I

r 1..... 1/ = It II.

Since

I: £"'Il(g,)::= I: exp / - ir(k I )2n:/1I) = II')",
, - 1 .- 1

we have in this case

I kncc, .1'1 ::= .. ' ::=.1'" 1= () whilc t'" is dctcrtnincd from

ANY" ::= e", where A"
h

I AI
I ~ 1

and

It follows from here that vector x. = U*.1'. also consists of II = n identical subvcctors

Sincc it was rel/uired to solve only one subsystem (77) and it is of order 11/. the elliciency of
the symmetry approach increases It times:

N,-h' and N~-It'.

This result may be gener.dil.ed. Let us present the load vector h. defined by (X7) as the
following Kronecker product

whac

[
h

ll

]
h ::= h = I' 1)(\ h ::= •..

*1 - * I ~ n
ho mh

(92)

(93)

Each group has a one-dimensional irreducible representation consisting of h positive units:
r,Jq,) = l. j = I•.... II, It is called the unity representation. Observa tion of Table 5 shows
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that the unity representation of groups C" and Ch is t". for group Sen. tu(g,) = t :,,(9,) since
e;'- IZ = t. regardless of fJ.. Finally t I is the unity representation of groups C"v. D". D"h and
D"". Clearly tit can be given by l', (93). Hence eqn (92) simply means that the active load
follows the unity representation: if the active load has a symmetry group G. then it follows
the unity representation of this group. and vice versa. The most common case in symmetry
of the active load is that in which the load follows an irreducible representation of a certain
subgroup ofgroup G describing symmetry of the loaded system. Such a case will be studied
in the next section. Now. for the sake of simplicity. we will consider a case of the active
loads following the irreducible representations of a particular symmetry group D~h. and we
assume that the actual symmetry of the FSS is also D~h' Such a system is shown in Fig. I.
ft possesses four vertical (u~ I) ••••• u~~) and one horizontal (Uh) planes of reflection. the
vertical principal axis c~ and four horizontal axes cill ••••• ci~I. System D~h contains
II = 4fl = 16 primitives.

Let A. be the stitrness matrix of D.h ; then it is real. symmetric and has the following
configuration:

A lh A I .1

A lh 11 9A I .1

..1 9

A I~ A 9

A I~ A 9

A I~ ..1 9

8 9 10 II 12 13 14 15 162 3 4 5 6 7

Al A5

A 5

A~

AI

AI

. (lJ4)

A lf, All

SYMMETRIC

rt is completely determined by six non-zero 11/ x m basic blocks A I, A~, A Ij, A I~' A lJ and
A I h. all of which are symmetric in accordance with Table 6.

One can find from Table 5 that group D.h has eight one-dimensional irreducible
representations t" ...• t'x and two two-dimensional ones, t 9 and t' 10; see also Table 9. Using
them we build matrix U (35) whose construction was described in Section 4. It is given in
Table 10. Now. if the active load follows the one-dimensional representation t'n then the
load vector b. has the formt

(95)

where Ilr is the roth column of U. If dim t'r( = flr ) > I. then there are n; active loads which

t Notice that h =0 (II ,,'/I) - I ~h". where hOI corresponds to cqn (92), It follows from
h. , = u,l8)h =0 (II,/It) , 'l",l8)h and h. , =0 1',l8)h",

.".. 11110-c
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~
15

~11
2 V

1 13 V 10

6j/
5 9 V

Fig. I. System D..

follow i,. For example. two-dimensional i~ is presented in matrix U(D Jh ) by four wlumns.
namely. 11'1 = 11".11, lI,n = 1I'•. I~' /III = /I".~I' and /l1~ = /I,•. ~~: sec Table 10. Hence there arc
four active loads following i~:

In fact all of these loads arc very similar: h.l~ = h.,.. h. 1I = H.'<I and h. 1l1 may be
obtained from h.,. by rotation of the active load about the principal axis ('4 through 90
counterclockwise. (Notice that loads which follow compkx irreducihle representations arc

TahJc'l. Irrcdlll:lhlc reprcs<:nlaliolls "r l(rollp {) 11,

ELEMENTS AND MATRICES OF IRREDUCIBLE REPRESENTATIONS Tr
IRREDUCIBLE

REPRESENTATIONS ',191'1 ',(91'+41 ',(91'.al ',191"'2)

I' • 1,2,3.4 I' ~ 1,2,3,4 I' • 1.2,3,4 I' • 1.2,3,4

'I 1 1 1 1

'2 1 1 -1 -1

..J 'J 1 -1 1 -1<
Z
0

'4 -1 -1 1Vi 1
Z
w

l-lll"! I-Ill'-I 1-111'"::li '5 I-W'"
C;\
w

(-1)1'" l-lll"! 1-1)1' 1-111'Z '60

'7 (_111'-1 1-111' (_1)1'-1 1-1)1'

'a (_1)1'" 1-111' (-1)1' (_111'"

r- r-

,
1'.1 t,il_ t t'J.I_l ~p-l

..J '9< <;.., t,u_lZ t
JJ

_ , (~~ 10
Viz '- '-
w .....::li
15

-tj,l_1 -<1'-' <0 t'1J.." 1'.,
3:...

"0

!iJ- 1 -tJ.l_t -t',u:_l €
~-1

...
NOTE: 'I' •••p (j~"/Zl, i • .r::'l
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Table 10. Matrix U(D..,J

ONE DtMENSIONAL ""111 .(P"ESENTAfIONS "fWO-O,MENSIQNAl Ittttf.OVCIBLE Af!"ItESfNT Ar,~s

" " " " " " " . , "~a

-,,,11,' "t"I.,' "],,1',' ,.,, 1111 "",I'll _,,,la,l 1',tl l,,) 1-.,,1'1) ·.H't~1 r",II,ll·",I'I'1 rUlli, "Ot1I~' ·'Olli.,ll "'Ult il,) "fGll il,'

l , I • 1 I • '. I "
,

" I "
,.

" '.
I h ! I , I ! : ,

ftc ". ,,.
If' o 11. ,,. ". I"

l·' l" I "I-
_1'4 I -1;4 I ,'T I I I I -,',l If. VC 114 If. _flC -"" I - 2-1 l 'ff- " ,
If. I -hi I -L. -,-h ! ! -L.) If• ... If' t!4 1,. 1,'. I '. - II -

"l- I -,. 1 -2'1 I l7 I -2'1i I• "' l,. "' ,. _liC
i

_tiC _11.
IT

h I -'- -,',I I - I, ,,. t,. _llC _t/ill "' ". -I'. I _h' ,T ,,
f-

':4 I f-r !-,7 I I, II. ,,. -1'. -114 _11. _I'. '4 - i""i' I 'TI- '" ",,"'-
-" ! -iT , -L. I

,
) If. ". _"4 -lIc ,'. ". -,. i -'l " IT

f-
-i"f I z'z I -fi• II. ,:. _11" _lf4 _1f4 _tie li.. ,'. ITn· If. I _tiC ! 1.'. _L4

,
l" ! 1 1 _,';I,,. U. -1:4

l2 - i'11,
I
-1'~ :

,.
If' _'1. U. _1/' _1/4 'I' _11. ,,.

II I IT "I" Ill'"

- l 'r I -,',1 , ,
" "' _1i4 "' -V4 'I' -II. 'I' _t:4

l'l '2

" II. _II. U. _1/. _1I4 li4 -II. "' -l~j 2'-2 I /1 -li
,

I .-L.. I I II) ,,. -fl. -1'. 'I' "'
_11. _1:' 1:4 ;,"f , "f I i1' lZ

I-

/1' I-,'f: f

1 I1 "' -lr. _114 ". -If. 1/4 II. -114 , -i-r
f- ,,. ..·'1

" 1 l

'/'
I

) ., •1. _fl. _l/• "' t!. -lit _tif I,' -2-.1 1 -2"71 -,-"1
f-

lO' I -i11 ,',. I• " "' _1:. -tl4 11. _1/. Ii. ,1' II

not Ihe stand;tnl mechanical loads,) The tolal numhcr of active loads which can be associ­
aled with all the irreducible representations of D4h is It = 16, These loads form a 16m x 16
malrix

The corresponding system of linear equations

A.X. = B.

is decomposed to

1\. Y. = C.

(97)

(9S)

and Ihe 16m x 16 matrix C.' which in accordance with (81) is equal to U~IB•. is of the
following form

that is,

c. = U~B. = (U II ® Im)(U®h)

= (UIlU)®Umh) = In®h = 116®h, (99)

h
( 100)
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To find the configuration of vector x. we first need to study matrix A•. It has the form:

A.j

1\ =• A·

A" j
A,"

A,"

and according to (63) and (6),

" 1h " ~, ,~ ,,1

A, = L f,(y,) ® A, = L L f,·(I1".,,, ,,)@ ..I," ·11< II

J -I )1 I I' I

r = I, ... , II == I fl.

Blocks A, Ax arc of order Ill; we present them in the form

(10 I)

( 102)

". of

= L (S" ® 1m )

" I

I A,. 1
.·I" ..,

Ai" S

A". I ~ J

( 103)

when: matril:es :;;,,, in al:l:Ordanl:e with Table lJ, arc the follmving:

S" =

1 I I I

I I -I -I

1 -I I -I

I -1 -I I

( -I)" I (- I)"
,

(-I)" I (-I)" I

( I)'" I (-I)" I (-I)" (-I)"

( I)" . I (- 1)" ( I)" I ( -I)"

( -I)" I ( -1)" (-I)" ( -I)" t

(104)

tl = I. :: ..'. 4.
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Blocks A~ and A IO (of ord~r 1m) ar~
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1::'1 1(.-f,,+Au+~)

Eu ~ ,(.-1'1+ K+ AII .. I~)

(105)

Matrix .-1* is reaL hence

(106)

A. ~ [-~-:-::-:-+--~-:-.:-~-] and A" ~ [ ~:::: AIO.I~ ],

1\ 10.11

(107)

Now we assume that the active load follows a one-dimensional representation f"

I ~ r ~ 8, Then one has to solve the m x m subsystem

( 108)

The entire vector y*, (whose order is mil = 16m) is determined by

( 109)

where i, is the roth column of the identity matrix Iii = I,~, Therefore, vector x* of the initial
unknowns is

.\'.' = U*y*, = (U ® I",Hi, ® y,)

= (Ui,) ® (1",.1',.) = u, ® .1',. ~ r ~ S. ( 110)

Clearly. its subvectors x I" •• " Xii' are distinguished only in scalar factors ± I. The efficiency
given by eqn (91) follows from here. This result may be formulated as:

Theorem 5. Illhe aclin' lowl j(J/lml's allY (}fIe-dimellsional irreducihle rel'reseflltllioll ol
yrolll' (j dC.I'aihill.c/lhe lIclllllI.I'Yf1I11lelry oj' ,lte FSS. 'hell 'he ('fficiellcy ill solrill.q malrix (,lill
(76) i.l' c/llIrCll"eri:ed hy /1/, = 11'1 lIlItl /1/1 = h1

•

If the active load is associated with a two-dimensional representation f" say r~, we
have four corresponding columns in matrix B*, namely, b*~, h*lfh h*11 and h*12' However,
it is necessary to solve only one subsystem of order 2m

o J [h OJ
.1'10 = 0 h

because I'll = y~ and )'12 = 1'10' Finally,

X*, = lI, ® 1',. 9 ~ s ~ 12,

( III )

( 112)

6.4. Blocks A" which relate to the one-dimensional irreducible representations, have a
simple mechanical interpretation. In the case undcrconsidemtion A, .. ,., A~ can be thought
of as matrices (stiffness matrices. for inst.tnce) of the fundamental primitive S, of system
D~h with eight different boundary conditions along the cut edges lying in symmetry planes
"h. 11~'1 and 11~:I. These conditions arc known as symmetric and antisymmetric (skew-
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symmetric). To define them let us assume that a certain symmetry plane P is spanned by
the coordinate axes rand:: and that node A lies in P. Then the restrictions imposed on
motion of node A

( 113)

are called symmetric while

(114)

are called antisymmetric. (Here II,' and (P,' are respectively translational and rotational
degrees of freedom. i = x. y . .:.) According to this ddlnition i\ I and ;\ 1 are associated with
the fundamental primitive 5, with respectively symmetric and antisymmetric boundary
conditions along all of its cut edges. All blocks ;\ 1••••• ;\, are interpreted in Table II. The
active loads. applied to the fundamental primitive and described by subveetors c, == e,1 (7X).
can be treated analogously.

Hermitian matrices;\" and ;\ III are associated with two primitives joined together and
having special com pie" (i.e. non-real) boundary conditions along the cut edges. Therefore.
in gcneraL the response of system n.lh cannot he e\pressed as a superposition of partial
responses of its uncoupled primitives.

Finally. ThClJrcm 4 pcrmits the following mCl:hanical interpretation: thc original FSS
composed of 11 primiti\'es and l'ontaining filII degrees of freedom is replaced hy lIuncoupkd
subsystems S'" corresponding to /I irreducihk repn:sent;llions r,. ,. "" I.... . 11. of the
associated symmetry group (;. Suosystem .\'1'/ has lillI, degrees of freedom and is composed
uf II, primilin:s uf lhe FSS (I ~ II, ~ 5). Its houndary conditilllls along thc cul edgL's arc
determined in accordance with r, and may oe descrihed oy real-valued as wcll as oy complex­
valucd functions. Suosyslem SIll is suhjectt:d to II, special loads whose load vectors c'c.

~. = I..... //,. art: ootained hy prokcting the original load vector h .. onto the vector span:
VI') spanned oy 1/111, column-vectors II,:,® I", (x == 1..... 11,) of matrix U.. == U® I",. The
responsl: or thl..' original/;SS is round as a supl:rposition or partial rl:sponsl:s orall suosystems
Sill. r = I.... . /1. If thl.' active load applicd to the FS5 follows a partil..'ular irreducible
rcpn:sentation r, then thl: load Vl.'ctor h.. lil:s in the vector space Vi". llence all othcr
subsystems Sill. ,. I- .1'. arc unloaded and do not participate in the total FSS response. This
is a typical casl.' in thl.' analysis or thc F5S and usually r, is onc-dimcnsional but not
necessarily thl.' unity rl.'presentation r".

6.5. Il is easy IlOW to trace an analogy between the symmetry approach and the modal
analysis. For the sake of simplicity we cOllsider the latter in the static interprdation: Lct

Tahk II SYIl1I11~ln<.: and ;InlhYIl1Ill<.:ln<.: htlllndary ollldititlns al Ih~ <':1I1 ~d!!~s or Ih<.: f) >I, rundal11~nlal rril11itiv~

SYMMETRY PLANES
.. MATRICES II,

HORIZONTAL '\ VE A TICAL fJ~21 VERTICAL fl~lI

1 1\1 "A 1 • AS • Ag • A 12 • AlJ • A 16 S'SYMMETRIC S S

2 112'Al'AS-Ag-A12-A1J-A16 S A' ANTISYMMETRIC A

J Ill" A 1 - AS' Ag ' A l2 -AlJ -A16 A A A
I

4 114 A 1 - AS .. Ag .. A 12 • A 1J • A 16 A S S

S IIS"A}' AS' Ag -A l2 ' A IJ -A 16 S S A

6 11 6 , A 1 • AS - Ag • A l 2" AlJ ' A16 S A S

7 11 7 , A l .. AS" Ag • A 12 - AlJ • A l 6 A A S

8 II 8 • A 1 .. AS ' Ag .. A 12 ' A lJ .. A 16 A S A
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( 115)

correspond to a certain linear mechanical system with n degrees of freedom. Matrix A is
real and symmetric. it has full set of eigenpairs (i.;. II,). i = I..... n. Denote by I\. the spectral
matrix of A. that is. the diagonal matrix of eigenvalues ;., and by U the fundamental matrix
of A. i.e. the matrix whose columns are the eigenvectors II, normalized to the unit length.
Matrix U is orthonormal: U - 1 = UT

. Let us present matrix A as the following triple

product

( 116)

substitute it into ( 115) and premultiply the result by UT
:

or

I\.y = c.

where

y = Urx and c = Ulh.

llaving ohtained the solution of the diagonal system (117) one can lind

x = Uy = L y,lI,.
' ... 1

( 117)

(II X)

( 119)

which means that the modal superposition is a weighted superposition of the eigenvectors
II, and the weights y, arc solutions of (117). Clearly, components c, of the vector c (118) are
dot products of the eigenvectors and the load vector h:

c, = lI,"h == 1I,·h. i = I, . .. ,n. (120)

Hence, if h is parallel to a certain eigenvector II, (we can say that the active load follows II,),

then it is perpendicular to all others and c, = 0 for all i #: j. Usually the modal superposition
is limited to. say. p low modes under the assumption that the load vector h belongs to
a vector subspace spanned by eigenvectors 1I1,11~, ...• I1". Therefore c, = 0 for i = p+ I.
p+2.... ,n.

The great advantage of the modal analysis lies in the fact that it is applicable to any
linear system. Its disadvantage is revealed in the requirement to solve a full or a partial
eigenvalue problem. The symmetry approach has the exact opposite advantage and dis­
advantage: the method is explicit, no eigenvalue problem has to be solved; however.
it is applic<lhle to symmetric systems only. It is interesting to note that if the primitives
of the FSS have one degree of freedom each (1/1 = I) and the corresponding symmetry
group G possesses one-dimensional irreducible representations only. then both methods
are identical. In this case matrix 1\.. becomes diagonal and consists of II eigenvalues of
A. = 1:J.1 Q(9,)(/,. whik matrix U. = U® I, == U is the fundamental matrix. hence the
full eigenvalue problem has .In explicit solution. Several matrices possessing this property
are given in Dinkevich (1986).
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~ SY~lMETRY APPROACH l~ STRLTTCRAL r\~,·\LYSIS OF A VACLTM VESSEL

7,1. To illustrate the symmetry technique we will trace here simplifications in the
structural analysis of the vacuum vessel of a fusion machine subjected to a set of loads with
different types of symmetry. The vacuum vessel (chamber camera) is a toroidal shell with
a circular (or D-shape) cross-section. It has many horizontal and vertical penetration ports
which are located cyclically symmetric in the circumferential direction. These ports together
with the supports (usually placed between the horizontal ports) reduce geometrical sym­
metry of the vessel from D ~h (axisymmetry) to Dnh • where 11 "- 10 20. To simplify the
problem we assume n = 4. Hence. the structural model of the vacuum vessel has symmetry
D~h and consists of/r = 4/1 = 16 primitives which are 45 sectors with a half circular cross­
section; see Figs 2 and 3 and compare with Fig. I.

We begin with the case when there is no parametric load and the active load is
arhitrary. [n this case matrix equation ..1.\'. h. with matrix A. given by (94) is explicitl}
dc-composed to the following form

I'. I

A.

A)

A,

A"

A"

A I <I

1\ 1<1

r,

.1'1<1.1

Y10.~

c,

('I

(' ,<

("'1

(' I o. ~

(121 )

where A I- •••• A, arc determined oy ( 1(3)( 1(4) and A., and 1\ I <I oy ( lOS) (106). Suovectors

..~.=-~~ _.~::::/- ..j

Ft~, 2, T<lroitlal va<:uUll1 vcssel (pcnctratlon ports clntl supports arc not shown), Systcm /)Ih'
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Fig. 3. Fundamental primitive of system D4.'

('1 ••••• C8 (oforderm) are calculated by

(122)

Subvectors Cq,y and CIO.7' "I = t. 2. are of order 2m. They may be presented in the following
form [compare with (107»):

. - [c 10. 1 I ]
(111.1- •

CIU.J ~

. - [(~'I'1~J(11.1 - _

Cq , II

• - [(~ I n.1 ~J
(Ill,~ - _ •

C 111.1 I

( 123)

Hence. it is sullicient to compute only C').I and CltI,l:

Cq.11

Clll.11

Clll,1 ~

I I

I I

1 -I

-I 1

hi'

hp + 4

®l",
h/d 8

(124)

h/ I + I~

Finally one finds vector x. :

X/I

X"..-M

1
= 4

I 1 1 1

1 1 -I -I

1 -I I -1

1 -I -I 1

1
+ J'2 Re [;/. I

(8)1",

Yq.II-YIO.II

Y'/,I ~ +Ylo,1 ~

r. I

r• 4

+(-1)1' I

• Ji = 1.2.3.4.

r• s

r• 6

r• 7

(125)
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7.2. The vacuum vessel is designed to confine the plasma ignited in it. therefore the
majority of its loadings is associated with plasmas. that is. with several scenarios of plasma
motions and disruptions. The plasma induces the parametric and the active loads on the
vacuum vessel. To simplify these plasma-induced loadings we will associate the temperature
distributions throughout the vessel with the parametric loads only. Then the active loads
will be the Lorentz's electromagnetic forces. that is. the pressure gradients. 'Ilp. which are
equal to the cross products of the eddy current. J. induced in the walls. and the magnetic
field. B. created to confine the plasma inside the vessel: 'Ilp = J x B.

One set of such loads corresponds to the horizontal (inboard) ~Lxisymmetic plasma
motion. These loads. both parameteric and active. have symmetry D, h whose intersection
with geometric symmetry D.jh gives the actual symmetry of the model D.jh' The active load
follows the unity irreducible representation of group D .jh. This case was discussed in the
previous section.

7.3. Another set of plasma loads relates to the axisymmetric vertical plasma motion.
Clearly. in this case the temperature distributions above and below the midplane are not
identical. therefore the parametric load does not have a horizontal plane of symmetry. Its
symmetry is C, ,. hence. the actual symmetry of the modd is D.jh n c, , = C.j,. In such a
case the vacuum vessd is divided into h = 2/1 = 8 primitives which are 45 sectors with a
circular cross-section. that is. they arc double the size of those in Figs 2 and -'.

The stitfness matrix A .. takes the form

A., A,

:1 x A,

.·f, :f,
( 126)

SYMMETRIC

Its blocks arc of order "2/11. They are symmetric according to Table 6. Group C.j, has four
one-dimensional irreducibk representations and a single two-dimensional one. therefore
matrix A .. (126) may be transformed by the similarity transformation to the following
block diagonal form

A =..
A.I

;\ ,

( 127)

The order of A, ..... A.j is 2/11 whih: dim A, = 4111. The active load follows the unity
representation which is r, for group C". hence. in accordance with (100). c, = ... = c, = fl.
Thus one has to solve only one 2/11 x "21/1 subsystem A, Y I = C ,. where

;\,=.-1,+.'1,+..1,. c,=h. (128)
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The total system response is determined by

(129)

7.4. As an alternative to the above case let us consider the vacuum vessel model C~h

in which the system is divided into another set of h = 8 primitives. They are 90" sectors
with a half circular cross-section and each has 2m degrees of freedom. the same as primitives
of C,. The stiffness matrix A. has the following structure

Al A: A~ A, A~ Ar

Ar A, An

A: A~ A, An

A, A~ A~ A,
(130)A.(Ch)=

A, A: A~

A z

SYM,'vIETRIC AI

All its blocks arc of ordcr 2m. hlocks A, and A ~ ~Irc symmetric. Group C 4h (sec Tublc 5)
has eight onc-dimensional irrcduciblc rcprcscntutions <,--TK' Buscd on them matrix A ••
(130) is transformcd to

1\ =• ( 131)

and dim I\r = 2111. r = I. .... 8. Blocks 1\:. 1\4. I\h and I\~ arc real and symmctric because
they correspond 10 real irn.:duciblc representations. Others are Hermitian and form complex
conjugate pairs: A, and Al = AI< As and A7 = As. The active load follows the unity
representation which in this case is <4. hence. it is necessury to solve subsystem A~y~ = c~.

where

(132)

Having obtained its solution we find

,. = ... - ,. - (1/" /")1'"1 -"K- -,,-.4' ( 133)

7.5. In thc above Subsections 7.2-7.4 we havc suggestcd that the active loads followed
the unity representation of groups D4h • C4, or C4h indicating that these loads had symmetry
D~h' C, or C h• respectively. In fact. those of the electromagnetic forces which are induced
on the walls of the penetration ports do not possess horizontal and vertical planes of
reflection. Instead they have a center of inversion and create torsion moments around the
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ports. Hence. strictly speaking. symmetry of the active load is only C •. Then in accordance
with Figs 1 and:': primitives 5 1-S.j are subjectcd to thc same load. say. hi' primitives
5 5-5, to anotha load h,. whilt: primitives 5",SI' and 5 1 ,,5 10 are subjected to h4 and
hi h respectively. where hr. h" h4 and hi \ arc arbitrary load vectors of order m. The total
load vector is

( 134)

A factor I '4 is introduced to satisfy eqn (100) in a case where hi = h, = h4 = h 11 • (see the
footnote on p. 1239). Substituting (134) into OS) and invoking Table 9 we tind that there
are four non-zero subvectars c, in the right side of eqn ( 121 ) :

C e = I 4(h l +h, h,,-hld

c, = 1/4(h l -h, h" +h l ,)

( 135)

Having solved four 111 x 1/1 subsystems

(136)

where:\ I.' , .• :\" arc given in Tahle II. and introducing their solutions into x ... = C*r*. we
ohtain

\1 =\', x, =\1 = 14[(YI+r;)+(r,+YI.l!

x: =\1 XI, = X, = I 41(.1'1 +l'.,) (1', +-.I'I.l1

.r" .- XII -. XI , X I , - 1/4[( 1'1 '1':) +(1', -1'1, II

.r 10 - X Ie = .\'1 I XI', = 1'4[( 1'1 - I'e) --- ( 1', r,.ll (U7)

7.6. Now we assume that symlllctry of the parametric loads is also (',j, Then the actual
symmdry of the vessel model is /)'11 n (', = ('•. It consists of h= /I = 4 primitives which
arc 90 sectors with a cin:ular cross-section, Eat:h primitive has 4/11 degrees of frecdom.

Now thc slilrncss matrix

A I ..Ie A~

:II A,~

( LiS)

, I \111/·. 1/1It' "'1

can be explicitly blot:k diagonali/ed to

1\. =

A,

( 139)

where dim A I = ... = dim A. = 4m. Since the active load follows the unity representation

of C. which is r.j. one has to solve the subsystem A.y. = C.j. where

( 140)
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The system response is determined by

XI = ... = X~ = (1,2)y~.
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(141)

7.7. Finally. we consider a non.axisymmetric plasma motion and disruption. and
assume that symmetry of plasma loads is equal to C Iv. i.e. it consists of one vertical plane
of reflection. If this plane does not coincide with one of the vertical symmetry planes of the
vacuum vessel. then the model has no symmetry: D~hnCt. = Ct. For such a case it is
necessary to model the whole vessel. If D ~h nC Iv = C Iv the model is divided into two
primitives which are 180"·sectors with 8m degrees of freedom each. Then

(142)

and it is necessary to solve a subsystem

(143)

of ortkr Rm. The total response of system Chis described by

(144)

7.1'. The Compact Ignition Tokamak (CIT) vacuum vessel structure with IX radial
penetration ports and 20 supports is the FSS /) ~h' It possesses two vertical and one horizontal
sylllllll:try planes and one vertical and two Iwrizontal axes ('~ lying at the intersections of
the planes. sec Fig. 4. In order to increase the degree of symmetry of the analytical model.

Fig. ~. Th.: CIT va.:uum vcss.:! mod.:! (v'crtical ports and supports arc not shown). Syst.:m D'h'
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hI,:, 5, !\n;t1ytie;t1 nlt>dd or the l'IT V;IC'UIlill vessc'l. Sy,tc'l1l t> ',,,,'

........

a)

b)

~<:'::.
.,_,f' , •• ,

;..,,,

.....
", ..

,.'.. '

~:.-:.;:; "::...:',':::'::.,
...... .,'

_...'" ....
./
".......;
,~/

..--/

./'"

c)

d)

~S~:.
.~~

.. ,-

,,',..>~...­
-~

~~J//'

..,.-

Fig. 6. Primitives or the CIT vacuul1l vessel models: (;1) Prlll1ltl\ es or n1\1del () :'",. (h I primitives of
model C,Oh, (c) primitives ofmodcl C,,,,. and (d) primitives ofnllldel CO'"



Finite symmetric systems and their analysis 1253

two artificial radial ports were addedt. By adding these ports the vacuum vessel structure
can be represented by the FSS D;llh: see Fig. 5. However. with regard to the applied plasma
disruption loads the actual symmetry of the model was reduced to Cl0, and then to C;o
and both models were used in the structural analysis of the CIT vacuum vessel by utilizing
the MSC/NASTRAN finite element computer program. The fundamental primitives of the
vacuum vessel models D;Oh' Cl0h• C;o, and Cl0 are shown in Fig. 6.
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